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Air entrainment upon liquid impact

B y A. Prosperetti and H. N. Og̃u z
Department of Mechanical Engineering, The Johns Hopkins University,

Baltimore, MD 21218, USA

The impact of round and plane liquid jets on plane liquid surfaces is simulated
numerically on the basis of a potential flow model. It is found that the mass of the
jet is as important as its momentum in determining the flow. For sufficiently long jets
and small Froude numbers air cavities are entrained. Entrainment is more unlikely
in two dimensions than in three.

1. Introduction

The Acts of the Apostles informs us that a ‘stone fallen from the sky’† was wor-
shipped in the famed Temple of Artemis in Ephesus, one of the Seven Wonders of
the ancient world. This is one of the earliest references to a natural process that
falls under the purview of the present volume, Violent Surface Motion. With typical
impact velocities of 1–20 km s−1, one can estimate impact pressures in the range of
tens to thousands of kbars, which are large enough to cause fluid-like flow of the
solid material involved in the impact (see, for example, O’Keefe & Ahrens 1986).
Interesting as such extreme events might be, in the present paper we tackle consider-
ably more modest problems in which the ‘violence’ is taken to refer to the fact that,
at least during part of the process, the temporal contribution to the fluid particle
acceleration is considerably greater than the convective one.

The practical importance of fluid motions of this type has numerous and diverse
aspects that include, for example, the slamming of floating bodies on the ocean sur-
face as well as cavitation damage. Our own interest is motivated by their occurrence
in air entrainment processes.

The entrapment of bubbles in a liquid is such an ordinary experience that the gur-
gling sound they produce is commonly identified—often mistakenly—with the sound
of flowing water itself. But aside from its common occurrence, there are many prac-
tical reasons that make this process worth studying. For example, air entrainment
can be detrimental in industrial operations such as the pouring of molten metals and
plastics, or beneficial in situations such as the aeration of liquids, from the ocean to
fish-farm ponds.

In spite of their importance and widespread occurrence, the study of air entraining
flows is relatively little developed. In considering the reasons for this situation, one
may point out that, in the first place, the formation and breaking off of a bubble is
such an extreme modification of the topology of a free surface that linear methods
of investigation are of little use. The only sufficiently powerful nonlinear technique—
the hodograph transformation (Birkhoff & Zarantonello 1957; Milne–Thomson 1960;

† King James version, 19:35; the Greek original is actually less specific.
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Gilbarg 1960)—is exclusively available for two-dimensional flows and, even in that
case, it has a difficult time dealing with time dependence, gravity, and surface ten-
sion, all of which play an essential role in the process. This leaves computation, which
is, however, plagued by numerical as well as modelling difficulties. On the experi-
mental side, observation is hampered by the extreme rapidity of the cavity closure,
the complexity of the flow, the fact that newly formed bubbles impede a clear view
of the process by which the following ones are formed, and other difficulties. Further-
more, there are a number of different processes by which air is entrained depending
on viscosity, level of surface disturbances, flow rate, geometry, and others (see, for
example, the recent review by Biń (1993)).

In the present paper we shall address what seems to be the simplest elementary
process, namely the flow that is established when a liquid mass impacts an extended,
initially plane, liquid surface. Typical examples would be rain drops or splashes
hitting the ocean surface. Less obvious occurrences of such phenomena are some
nominally steady situations such as air entrainment by a steady jet falling into a
liquid pool. Indeed, for low-viscosity liquids, a close inspection of this situation reveals
that air is entrained when disturbances on the surface of the falling jet reach the
surface of the pool liquid (Lin & Donnelly 1966; Sene 1988; Og̃uz et al. 1992; Og̃uz
& Prosperetti 1994).

2. Overpressure

In view of the complexity of these flows, it is of interest to inquire to what extent
the process can be simplified without compromising its fundamental physics. In this
spirit we consider the flow established by an overpressure ∆P , constant in time,
acting over a given portion A of the surface of an initially quiescent fluid. This might
be thought of as representing the transient flow induced by a liquid jet of cross section
A impacting normally a plane liquid surface with velocity

U =
√

2∆P/ρ. (2.1)

We assume the overpressure to act over a surface area πa2 in three dimensions
(cylindrical ‘jet’), or over an infinite strip of width 2a in two (plane ‘jet’). The
parameters governing the problem can then be grouped into the Froude, Weber and
Reynolds numbers defined, respectively, by

Fr = U2/ag, We = ρU2a/σ, Re = aU/ν. (2.2)

Here g is the acceleration due to gravity, σ the surface tension coefficient and ν the
kinematic viscosity. Since for most of the applications of interest here the flow is
highly transient and the Reynolds number large, we shall neglect viscous effects. For
simplicity, we shall also neglect surface tension that is likely to be unimportant except
for small drops. Weber number effects on some flows of the general type studied here
were considered in some earlier papers (Og̃uz & Prosperetti 1990, 1994).

With these assumptions, we can introduce a velocity potential φ which solves the
Laplace equation subject to the boundary conditions

∂φ

∂t
+

1
2
|∇φ|2 +

1
Fr
η = p, (2.3)

dxs
dt

= ∇φ|xs . (2.4)
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(a) (b)

Figure 1. Successive free surface shapes produced by a constant, steady overpressure acting
on the surface of a liquid in three (a) and two spatial dimensions (b) with an infinite Froude
number. Successive contours are separated by one dimensionless time unit. The dashed squares
have sides equal to two dimensionless units. The overpressure acts over a distance of two units
at the center of the figures.

In the expression (2.3) of the dynamic boundary condition, η is the elevation of the
free surface above the initial, plane quiescent state and p is the pressure in excess of
the undisturbed level non-dimensionalized by ∆P . In the kinematic condition (2.4),
xs is the generic surface point.

These equations have been written in dimensionless form non-dimensionalizing
lengths in terms of the jet radius, or half width, a, and velocities in terms of U . The
initial conditions are

φ = 0, η = 0. (2.5)
The problem is solved numerically by a version of the boundary integral method

that we have extensively used and documented in our previous papers (see, for ex-
ample, Og̃uz & Prosperetti 1990, 1991, 1993, 1994) to which the reader is referred
for details.

We consider a ‘top hat’ overpressure distribution, p = 1 for 0 6 r 6 1, or 0 6
|x| 6 1, and p = 0 elsewhere. The simplest case is that of Fr → ∞, which is
the one we consider first. A sequence of free surface shapes for the axisymmetric
and two-dimensional cases is shown in figure 1, left and right, respectively. Here,
successive contours are separated by one dimensionless time unit. The squares have
sides equal to two dimensionless units. Remarkably, if these profiles are translated so
as to align their lowest points, the cavity shapes are found to be very similar in the
two geometries. Note the thin column of fluid on the axis, or plane, of symmetry left
behind by the advancing cavity. Since the overpressure is prescribed to be uniform,
aside from transient effects that may be expected to decrease with time, the modulus
of the fluid velocity must be constant. This circumstance prevents the formation of
a stagnation point relative to the cavity bottom. It may also be expected that the
rate of penetration of the cavity be very nearly

√
2∆P/ρ, which is indeed confirmed

by the numerical calculation. The only major difference between the two geometries
is the bigger splash in the plane case, which may be simply attributed to mass
conservation and geometry.

Some examples for finite Froude numbers are shown in figures 2 and 3 in three
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(a)

(d) (e) (f)

(b) (c)

Figure 2. Successive free surface shapes produced by a constant, steady, axisymmetric overpres-
sure acting on the surface of a liquid in the region 0 6 r 6 1. In the upper row Fr = 1, 2, 4.
Successive contours are separated by 0.2 dimensionless time units. The last contours shown are,
from the left, at times 5, 3.8 and 5.25. In the second row Fr = 8, 16, 32. Successive contours
are separated by 1 dimensionless time unit. The last contours shown are at times 7.31, 10.5 and
15.2. In all cases the dashed squares sides equal two dimensionless units.

and two dimensions, respectively. Here, from left to right, Fr = 1, 2, 4 in the upper
row and Fr = 8, 16, and 32 in the bottom one. The behaviour for Fr = 1 is markedly
different from the other cases particularly in the axisymmetric geometry.

Initially the surface disturbance creates a cavity that, because of inertia, overshoots
equilibrium and fills up from the bottom with a thin jet. It is likely that a nonlinear
oscillatory motion would be found if the calculation were continued past this point.
This is indeed the result in the first two-dimensional example of figure 3. With
weaker gravity effects, however, the crater collapses inward from the sides before the
downward motion of its bottom can be reversed and a large bubble is entrapped, the
later the larger Fr .

In figure 4 the circles mark the dimensionless volume V/a3 of the entrapped bubble
in the axisymmetric case and in figure 5 the closing time of the cavity, both as
functions of Fr . The corresponding results for the two-dimensional geometry are
indicated by squares. The trends displayed in these figures appear to be remarkably
simple and it is tempting to try to reproduce them on the basis of scaling arguments.

Consider the axisymmetric case first. One may expect that, if the overpressure
is sufficiently large, to a first approximation its precise distribution over the cross
sectional area would be immaterial so that the only fundamental parameter would
be the surface ‘force’

F3 =
1
ρ

∫
A

dA∆P = πa2 ∆P
ρ
, (2.6)

where the last step follows from the assumed spatial uniformity of ∆P in the present
case. Dimensionally, [F3] = L4T−2, where L and T are units of length and time.
If the only other quantity determining the cavity volume V is gravity, dimensional
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(a) (b) (c)

(d) (e) (f)

Figure 3. Successive free surface shapes produced by a constant steady two-dimensional over-
pressure acting on the surface of a liquid in the region 0 6 |x| 6 1. In the upper row Fr = 1, 2,
4. Successive contours are separated by 0.2 dimensionless time units in the first example and by
0.4 in the other two. The last contours shown are, from the left, at times 5, 4.9 and 6.8. In the
second row Fr = 8, 16, 32. Successive contours are separated by 1, 1 and 2 dimensionless time
units. The last contours shown are at times 10.2, 15.6 and 24.4. In all cases the dashed squares
sides equal two dimensionless units.

V
 / 

a3 ,
 V

 / 
a2

Fr

Figure 4. Dimensionless volume of the entrapped bubble with axial symmetry (circles) and in
two dimensions (squares) for a constant applied overpressure as a function of the Froude number.
The solid line has unit slope. A best-fit to the numerical data gives slopes of 1.067 and 1.087
for three and two dimensions, respectively.

analysis leads us to expect a relation of the type

V ∝ F3/g. (2.7)

Upon using the expression (2.6) for F3 and rewriting this relation in terms of the
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U
t /

 a

Fr

Figure 5. Dimensionless time necessary to entrap a bubble with axial symmetry (circles) and
in two dimensions (squares) for a constant applied overpressure as a function of the Froude
number. The solid line has slope 1/2. A best-fit to the numerical data gives slopes of 0.506 and
0.584 for three and two dimensions, respectively.

Froude number defined in (2.2), we find

V/a3 ∝ Fr . (2.8)

The solid line in figure 4 depicts this relation and is seen to fit the numerical results
remarkably well.

A similar line of reasoning can be followed for the closure time tc shown in figure 5
to find

tc ∝ (F3/g
4)1/6, (2.9)

from which
Utc/a ∝ Fr2/3 . (2.10)

The solid line in figure 5, which is seen to fit the data very well, is proportional to
Fr1/2 rather than Fr2/3. The scaling (2.10) does not therefore seem to capture the
physics of the closure process.

One may explore a different scaling based on the characteristic time for the filling
of the crater under the action of gravity,

√
a/g. In this case one finds

Utc/a ∝ Fr1/2, (2.11)

which agrees very well with the numerical results. The entrained volume, however,
turns out to be proportional to Fr3/4, which is at variance with the results of figure 4.

For the two-dimensional case, we are led to use, in place of (2.6),

F2 =
1
ρ

∫ a

−a
dx∆P = 2a

∆P
ρ
. (2.12)

The results corresponding to (2.7) and (2.9) are now

V ∝ F2/g, tc ∝ (F2/g
3)1/4, (2.13)

from which one finds V/a2 ∝ Fr as in (2.8), and again (2.10) for tc. The line
in figure 4 shows a good agreement with the computed volume. As noted before,
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however, the line in figure 5 for the computed closure time has a slope 1
2 rather than

2
3 . The alternative scaling in terms of F2 and

√
a/g gives again V/a2 ∝ Fr2/3 and

the same scaling (2.11) for tc. Thus we conclude that, in two, as well as in three,
dimensions, a single scaling fails to account for both V and tc. The volume is seen
to respond to the input energy, while the closure time appears to be determined by
the kinematics of uniformly accelerated motion.

The previous results have been obtained with an overpressure lasting as long as
the cavity closes. If the overpressure duration is too short, one finds that no closed
cavity forms similarly to the situation of the Fr = 1 cases in figures 2 and 3.

The approach taken in this section was motivated by the desire to simplify the
simulation of a liquid jet impacting a liquid surface. To the extent that we have
accounted for the momentum of the jet, neglecting its mass, these results may perhaps
be better considered as simulations of ‘blowing’ over the free surface. We now turn
to a more realistic simulation of jet impact, including the jet itself, to examine the
mass effects.

3. Impacting jet

The formulation of the problem is the same as that given in (2.3) and (2.4). The
only difference concerns the initial conditions (2.5). We assume that, at t = 0,
a column of liquid of unit radius (or, in two dimensions, half-width) impacts the
undisturbed surface with unit velocity. The column’s dimensionless height h (i.e. its
aspect ratio) is kept as a parameter, and the initial value of the potential is

φ(x, t) = z, for 0 6 z, (3.1)

while φ = 0 for z 6 0. The dimensionless numbers are defined by the same re-
lations (2.2) as before, in which now U is the velocity of impact. To avoid sharp
corners on the free surface, we cap the column with a hemisphere (or semicircle),
which is not included in the stated values of the aspect ratio. We have satisfied
ourselves that the details of how the column is terminated are immaterial for the
development of the flow.

As before, we begin with the infinite Froude number case. Successive free surface
configurations are shown in figure 6 for the axisymmetric (left) and plane cases. The
jet aspect ratio is h = 15. Successive profiles are separated by four time units and the
squares have sides equal to five units. Contrary to the overpressure calculation, the
crater is seen to expand sideways as its bottom becomes deeper. This effect is due
to the need to provide a radial pressure gradient to change the flow direction of the
deflected jet liquid that ‘coats’ the cavity’s outer surface, and is therefore a direct
consequence of the mass effect mentioned before. Since, due to geometrical effects, the
thickness of this coating layer is less in the axisymmetric case, the pressure gradient
is correspondingly smaller and the crater narrower.

It is a classic result, in both two and three dimensions, that the rate of penetration
of the jet into the receiving liquid is 1

2U (Birkhoff et al. 1948; Birkhoff & Zarantonello
1957, p. 15). This result depends on the assumption of steady flow and the neglect of
splash effects and is therefore valid in the asymptotic limit of large times and deep
cavities. The argument is very simple and is as follows. If V is the downward velocity
of the frame of reference in which the cavity bottom is at rest, the velocity along
the jet surface would be U − V , while the velocity along the outer cavity surface
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(a) (b)

Figure 6. Successive free surface configurations due to the impact of a round (a) and
two-dimensional (b) jet with aspect ratio 15. The Froude number is infinite. Successive pro-
files are separated by 4 time units. The squares have sides of 5 units. The last shape shown is
for t = 52.

Ut / a

υ
z 
/ U

Figure 7. Downward velocity of the cavity bottom for the axisymmetric case with Fr →∞ and
h = 5, 10 and 15. The dashed lines are the estimate (3.3).

would asymptotically be V . Since the modulus of the velocity along a steady free
streamline must be constant, U − V = V and the result quoted follows.

To test this prediction, we show in figure 7 the computed downward velocity of the
axisymmetric cavity bottom as a function of time for h = 5, 10, and 15. Aside from
some numerical noise, a value close to the asymptotic estimate of 1/2 is attained
very quickly, after a depth of penetration equal to about one jet radius. Since the
relative velocity of the tail end of the jet with respect to the cavity bottom is U− 1

2U ,
complete penetration is expected to occur after a time tp = 2h/U which, for the cases
shown in this figure, equals 10, 20, and 30. This expectation is also well borne out by
the figure. Around t = tp, the time dependence of the velocity undergoes a marked
change as the motion transitions from an expansion driven by the incoming jet to an
inertial regime driven by the accumulated kinetic energy. One can approximate this
latter phase assuming conservation of energy for an expanding sphere with radius
equal to the depth of the crater H(t):

H3Ḣ2 = h3( 1
2U)2. (3.2)

This expression assumes that, when the inertial stage of the motion begins, the
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υ
z /

 U

Ut / a

Figure 8. Downward velocity of the cavity bottom for the two-dimensional case with Fr →∞
and h = 5, 10 and 15.

crater has a depth h (which is also a classic result which readily follows from the
previous arguments) and a velocity (1

2U). Upon integrating (3.2) subject to H = h
at tp = 2h/U we find

H = h( 5
4(Ut/h)− 3

2)2/5. (3.3)
This relation is shown by the dashed lines in figure 7. It is seen to match fairly
well the velocity at the beginning of the inertial expansion, but to overestimate it at
later times. This difference is probably the consequence of the fact that (3.2) does
not account for the portion of kinetic energy that is taken up by the splash. What
remains available for the expansion of the cavity is therefore somewhat less than
assumed in (3.2), and therefore the velocity decrease more rapid.

The results of figure 7 show some numerical noise in the early, nearly constant-
velocity penetration phase. The quantity plotted is the downward velocity of the
lowest point of the cavity, a position that, due to small numerical errors, fluctuates
among a few neighbouring nodes. After complete penetration, the cavity lowest node
does not change, which accounts for the much smoother portion of the curve for
t > tp.

The two-dimensional case can be considered along the same lines. Figure 8 is a
graph of the velocity of the bottom of the cavity versus time. We see that, here,
the approach to the asymptotic value is much slower and, as a matter of fact, has
barely been completed by the time the jet has been entirely consumed. In this case
a model in which the cavity expands as a semi-circle is wrong in principle as the
kinetic energy of such a motion would be logarithmically divergent. Thus, the free
surface is essential in determining the cavity motion in the two-dimensional case.
This is another angle from which the very prominent role played by the splash in
this geometry can be viewed.

An exact analytical solution exists for the two-dimensional problem (see, for exam-
ple, Birkhoff & Caywood 1949; Birkhoff & Zarantonello 1957, p. 36) in the asymptotic
limit t→∞ in which the crater has infinite depth and is given by

z + ix
πa

= − 4
(ζ + 1)2 −

4
ζ + 1

+ 2 log
ζ + 1
ζ − 1

+ 8 + 2πi, ζ = exp iθ, 0 6 θ 6 π. (3.4)
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x

z

Figure 9. Comparison of the free surface shape with the asymptotic analytic result (3.4) (dashed
line) at times 10 and 20 for h = 15 and Fr → ∞. The computed surface shapes have been
translated downward by 8.4 and 4.2, respectively, so as to match the lowest point of the cavity.

For future reference we note that, far from the cavity bottom, this relation gives

x ' 4
√

(z/π). (3.5)

We compare the result (3.4) (dashed line) with the computed free surface shape at
(dimensionless) times 10 and 20 in figure 9 for h = 15. It can be seen that the latter
shape follows the asymptotic result over a greater portion of the free surface, as
expected. The major difference between the asymptotic and transient solutions is
the thick splash thrown upward from the free surface.

We conclude that, in two dimensions, the asymptotic limit (3.4) of an infinitely
deep crater is approached very slowly and is therefore only relevant for very long
jets. As a consequence, frustratingly long computational times are required to reach
‘asymptopia’.

Switching on gravity changes the situation in two major respects, one obvious and
the other one perhaps less so. The former is the tendency for the side walls of the
cavity to collapse inward, much in the same way as found before in the overpressure
case. The second difference is that the velocity of the falling mass keeps increasing as
potential energy is traded for kinetic energy. In order to account in an approximate
manner for this latter effect, we introduce the modified velocity

Ue =
√
U2 + 1

2gh, (3.6)

obtained by converting the kinetic plus potential energy of the jet at the moment of
initial impact with velocity U to kinetic energy with velocity Ue. Correspondingly,
we define a modified Froude number by

Fr e =
U2

e

ga
= Fr +

1
2
h

a
. (3.7)

For jets with a large aspect ratio, the difference between the Froude number at
impact, Fr , and the energy-based Froude number, Fr e, can be considerable.

Some results for Fr = 2, 8, and 32 are shown in figure 10 for aspect ratios of
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(a) (b) (c)

(d) (e) (f)

Figure 10. Successive free surface configurations due to the impact of a round jet with aspect
ratio 20 (top row) and 10. The Froude number equals 2 for (a) and (d), 8 for (b) and (e) and 32
for (c) and (f). Successive contours are separated by 0.5 dimensionless time units in (a) and (d)
and by 1 unit in the other cases. The last contours shown are, in alphabetical order, at times
5.9, 10.7, 22, 6.2, 11.2 and 22.2. In all cases the dashed squares sides equal 5 dimensionless units.

20 and 10. In the former case, with increasing Fr , there is a transition between a
situation in which the cavity walls collapse against the jet and one in which the
jet has penetrated below the closure point by the time closure takes place. The
volume of entrapped air is significantly different in the two regimes. For the shorter
jet, the first regime is not observed in the range of Froude numbers shown, but a
further qualitative different phenomenon begins to appear for Fr = 32, figure 10f .
After the jet has been consumed, the downward motion of the cavity bottom starts
decreasing and eventually reverses. At slightly higher Froude numbers, this process
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(a) (b) (c)

(d) (e) (f)

Figure 11. Successive free surface configurations due to the impact of a two-dimensional jet
with aspect ratio 20 (top row) and 10. The Froude number equals 2 for (a) and (d), 8 for (b)
and (e) and 32 for (c) and (f). Successive contours are separated by 1 dimensionless time unit
in (a) and (d), 5 units in (f) and 2 units in the other cases. The last contours shown are, in
alphabetical order, at times 10, 14, 44, 10, 20 and 50. In all cases the dashed squares sides equal
5 dimensionless units.

tends to produce an upward moving jet that escapes from the cavity before the
inward motion of the side walls can entrap a bubble, as more clearly shown in the
last two examples of the following figure. An analogous phenomenon taking place in
the trough between two colliding surface waves was described by Peregrine and co-
workers (Cooker & Peregrine 1990; Peregrine & Prentice 1994) as ‘flip through’. The
result of the competition between the inward motion of the side walls and the upward
motion of the cavity bottom—that plays a central role in all the cases considered
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U
e 

t c
 / 

a 
 / 

F
r e1/

2

Fre

Figure 12. Ratio of predicted, equation (3.10), and numerically computed closing time for
two-dimensional cavities.

here—depends on the length of the impacting jet and the Froude number. The last
example shown in figure 10 is very close to the borderline between bubble entrapment
and the escaping of the upward jet. Only a very small bubble would be entrapped
in this case, and no bubble at all for a slightly higher value of Fr or shorter jet.

Numerical results for the two-dimensional case similar to those given in figure 10
are shown in figure 11 for aspect ratios of 20 and 10. Upon comparison with the
axisymmetric case it is apparent that air entrapment is a less likely event in two
dimensions, chiefly because the crater tends to be much broader.

We can extend to this two-dimensional geometry an argument that we have used
earlier in the axisymmetric case to scale the closure time (Og̃uz et al. 1995). We
assume that the time necessary for the closure of the cavity at a depth z can be
written as

tc(z) =
z

1
2Ue

+ c

√
a
(

1
2Uetc − z

)
gz

. (3.8)

The first term is the time required for the cavity, that proceeds downward with an
average velocity 1

2Ue as argued before, to reach depth z. The second one is the ratio
of the cavity width estimated from (3.5), at a distance 1

2Uetc − z from its lowest
point, to a closure velocity estimated in terms of the hydrostatic head,

√
gz. The

undetermined constant c is expected to be of order one. The minimum of tc over z
should approximate the actual closing time and depth. Upon taking the derivative
of (3.8) and setting to zero we find the depth D of the closure to be

D/a = 1
2cFr1/2

e , (3.9)

from which, upon substituting into (3.8), we find the dimensionless closing time

Uetc/a = 3
2cFr1/2

e . (3.10)

The prediction (3.10) is compared with some numerical results in figure 12, where it
is seen to be in good agreement with them for c ' 4.67. Following the same argument
along the lines used in the three-dimensional case (Og̃uz et al. 1995), one can derive
estimates for the volume of the entrapped bubble. Unlike the three-dimensional case,
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(a) (b) (c)

(d) (e) (f)

Figure 13. Successive free surface configurations due to the impact of a two-dimensional jet with
aspect ratio h = 20 (top row), 5 ((d)) and 10 ((e), (f)), and an inclination of 11.46◦. The Froude
number equals 2.04 in (a), 4.08 in (b), (d) and (e) and 16.3 in (c), (f). Successive contours are
separated by 0.5 dimensionless time units in (a), 1 unit in (d), (e) and 2 units in (b), (c) and
(f). The last contours shown are, in alphabetical order, at times 6.5, 14, 30, 11.9, 12.6 and 32.7.
In all cases the dashed squares sides equal 5 dimensionless units.

however, the result is not in very good agreement with the computations. It may
also be noted that, as in our earlier work on the axisymmetric case, the preceding
argument has been cast in terms of the energy-based velocity and Froude number.
The use of these quantities gives a much better fit than the corresponding ones based
on the velocity at impact.

One would expect that the approach just explained could be successfully applied
to the overpressure model of the previous section. For the axially symmetric case
the result is that both the closure time and the entrapped cavity volume should
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scale proportionally to Fr1/3. As we have seen, this prediction is at variance with the
numerical results for both geometries. Since, as we have just mentioned, a successful
scaling on the basis of this argument seems to require the use of Fr e, rather than Fr ,
an (admittedly somewhat shaky) explanation of this surprising conclusion might be
that the Froude numbers considered before are not sufficiently large for the argument
to apply.

The two-dimensional case lends itself readily to the simulation of non-normal im-
pacts. We show some results for an impact angle of 0.2 rad (11.46◦) and h = 20, 5
and 10 in figure 13. The bubbles entrapped in the cases of figure 13b and c look very
much like what one would expect from the analogous normal-impact cases shown in
figure 11a and b. The smallest Froude number case in figure 13, case a shows a differ-
ent mode of air entrainment with the cavity ‘capped’ by one side of the incoming jet.
One can expect that this process would be very common for greater angles of impact
due to geometrical factors. The last example, figure 13f , features a prominent thin
jet oppositely directed with respect to the original one.

4. Conclusions

In his study entitled ‘The fascination of fluid mechanics’ published in J. Fluid
Mech. (25th Anniversary volume), Professor Peregrine devoted more than two thirds
of his paper to splashes (Peregrine 1981). The phenomena that we have considered
here are intimately related to those studied by him and are perhaps no less fasci-
nating. But in addition to their intrinsic fluid dynamical interest, such liquid–liquid
impact events are of fundamental importance as they lie at the root of air entrain-
ment processes in low-viscosity liquids. With respect to the heyday of free-streamline
theory in the central decades of this century, when several of the phenomena dis-
cussed here were first studied, we enjoy the advantage of powerful computers and
numerical techniques. Nevertheless, such flows still present considerable challenges, of
which the unresolved issues that we have encountered above are but a few examples.

Before closing, it is necessary to at least mention another very important, and
little understood, matter that has been tacitly avoided so far. We refer to the phe-
nomena occurring at the moment at which the initial contact between two disjoint
liquid surfaces is established. We have sidestepped this difficulty by starting all of
our calculations with the liquids already in contact. A preliminary discussion of
the problem was given in an earlier paper (Og̃uz & Prosperetti 1989) where it was
shown that, most likely, many small bubbles are entrapped in the region where con-
tact is established. In part, their formation is the consequence of thermodynamic
non-equilibrium phenomena and hence cannot be followed in a deterministic fluid
dynamic calculation with a practical time step. For this reason, it appears necessary
to somehow develop a computational approach capable of dealing with this phase of
the motion in an artificial way without adversely affecting the subsequent simulation.
Some progress in this direction has been made by Best (1993) and by Zhang et al.
(1993), but it is fair to say that no widely accepted procedure has emerged from
these initial attempts.

In conclusion, we mention a possible implication of our results in a very different
branch of Science. There is convincing proof that a small fraction of the meteorites
found on Earth originate from Mars and the Moon (Gladman et al. 1996). The mech-
anism hypothesized to explain this surprising fact is that this material was ejected
from the parent celestial body by the impact of a larger meteorite and then accel-
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erated past the escape velocity by the high-velocity vapour plumes formed in the
course of this catastrophic event. The quantitative confirmation of this hypothesis
rests, at least in part, on two-dimensional numerical simulations of impacts (O’Keefe
& Ahrens 1986) that, as the previous calculations show, tend to considerably overes-
timate the magnitude and velocity of the splash created by the impact. If less mass
rises over the surface of the planet at a smaller velocity and a lower elevation than is
estimated on the basis of such calculations, it is less likely that it be accelerated to
the required speeds. It may therefore be necessary to confirm the two-dimensional
estimates by more precise three-dimensional calculations.
Support by the Office of Naval Research is gratefully acknowledged. H.N.O. has been supported
in part also by NSF under CTS 9318724.
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